

Achieving a Successful Mix

 Scott Equipment Company is the Nation's Leading Industrial Equipment Manufacturer

What Is Successful Mixing?

- Choosing the right Mixer (Surge) for your needs
- Following a mix cycle that falls within the capabilities of the machine
- Placing the ingredients in the right spot
- Testing to ensure accuracy
- Maintaining the mixer through a simple yet disciplined procedure/schedule

Choosing the right mixer (Surge) for your specific requirements

- How big of a batch do you want to achieve?
- How small of a batch do you want to achieve?
- How many batches do you want per hour?

Mixer Sizing

Sizing is determined by the volumetric displacement of the agitator

The formula is $\pi \times r^2 \times L \div 1728 = cu.ft$.

The "working capacity" is then determined by using a percentage of the total displacement

Double Ribbon Agitator Design

BENEFITS

- Standard and highly efficient designs are considered
- Design offers discharge locations at center, end, through the endplate of the mixer or full drop bottom without *sacrificing* quality
- Blends up to 5-7% of liquids to dry material

CONSIDERATIONS

 Ribbon agitators produce some degree of shear which may damage fragile products

Paddle/Ribbon Agitator Design

- Outside paddles lift and fold product, cross mixing a homogeneous blend.
- Inside flighting provides circulation

BENEFITS

- Gentle on friable products
- Provides cross mixing of material
- Compromise of paddle and ribbon features

CONSIDERATIONS

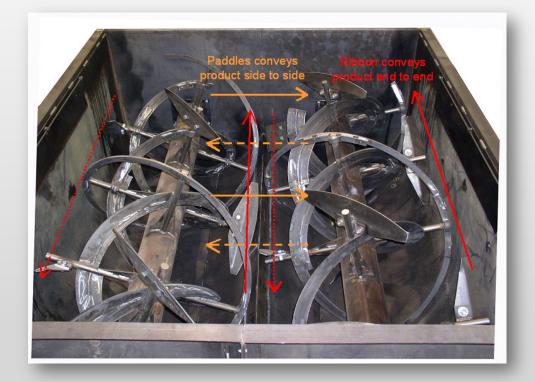
 When used in a single agitator approach, is typically less efficient than a double ribbon

Paddle/Ribbon Agitator Design

- Outside paddles lift and fold product, cross mixing a homogeneous blend.
- Inside Paddles Convey Product

BENEFITS

- Gentle on friable products Better at mixing ultra fine products
- Great for liquid additions


CONSIDERATIONS

• Least efficient mixer design.

Twin Shaft Agitator Design

- Outside paddle/ribbon combination conveys while cross mixing
- Inside ribbon flighting conveys the opposite direction of the paddle/ribbon. In effect circulating ingredients as it cross mixes.

Twin Shaft Agitator Design

BENEFITS

- Shorter mix times
- Highest efficiency agitator design
- Low Coefficient of Variables
- Greatest batch size range from 15-85% fill levels

CONSIDERATIONS

• Additional agitator, drive and gate could add to maintenance

Full Drop Gate Discharge Design

BENEFITS

- Bottom 1/3 of the mixer tub opens for discharge.
- Complete clean-out
- Fast evacuation of product (3-5 seconds) speeds batch times

WE IMPROVE LIVES

CONSIDERATIONS

- Fine powders may leak pass seals
- Not a metering gate

Determining Horsepower

A general rule of thumb: 10 HP per ton of complete feed (fat addition included)

- When adding molasses up to 5%, 20 HP per ton
- Mineral or product heavier than complete feed is between 10 – 20 HP per ton, depending on agitator design
- Product reaction to agitation may require more horsepower as mixing progresses

The Mix Cycle

Sequencing

- Adding dry ingredients: Majors, Minors, Micros, Hand Adds
- "Dry" mix time
- Liquid Inclusion
- "Wet" mix time
- Discharge

Factors which affect the mix cycle required:

- Ingredient Sequence
- Location of micro ingredient inclusion

Mix Cycle Times

MIX CYCLE TIMES (SECONDS)									
MAJOR INGREDIENTS	15	15	15	15	15				
MINOR INGREDIENTS	20	20	20	20	20				
MICRO INGREDIENTS	15	15	15	15	15				
DRY MIXING	60	60	45	45	30				
LIQUID ADDITION	120	60	45	45	30				
WET MIX	60	60	60	30	30				
*DISCHARGE	10	10	10	10	10				
TOTAL SECONDS TOTAL MINUTES	300 5	240 4	210 3.5	180 3	150 2.5				

PRODUCT FLOW OF OUTER FLIGHTING/PADDLES

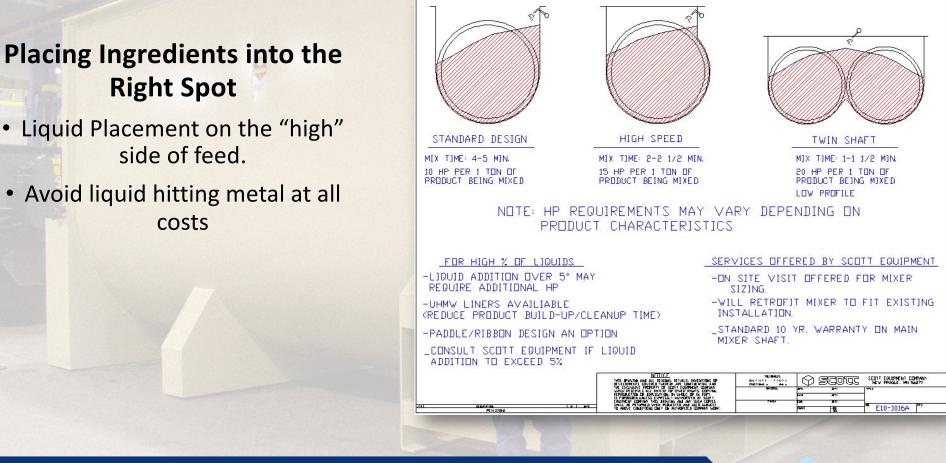
RIGHT HAND ROTOR CLOCKWISE ROTATION IDLE END DISCHARGE

Micro/Minor Ingredients in the middle 1/3

ADD MICRO AND MINOR INGREDINENTS INSIDE BOXED AREA FOR BEST MIXING RESULTS

> LEFT HAND ROTOR COUNTER CLOCKWISE ROTATION DRIVE END DISCHARGE

> > IDENTIFY ALL ROTORS WHEN FACING THE DRIVE END


WE IMPROVE LIVES

Placing Ingredients

into the Right Spot

•

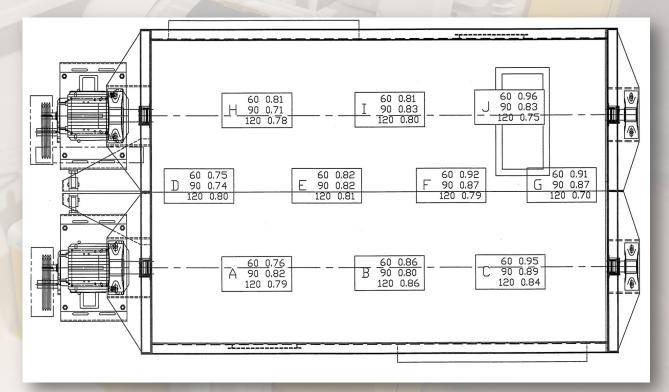
Testing to Ensure Accuracy (CV Tests)

Test Procedure

- Test in the Mixer
- Test in the Surge
- Test at the leg transition (determine time required to empty the surge and divide by 12)

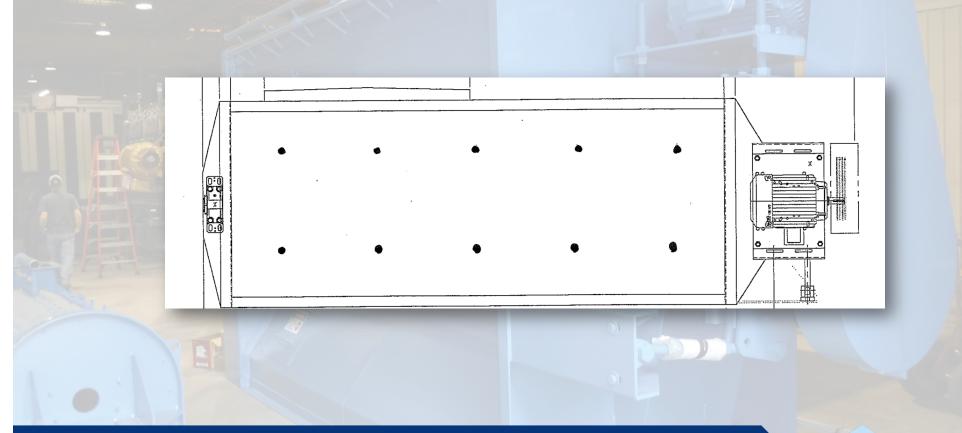
Tracer (Zinc, Manganese)

Maintain Consistency


- Obtain test samples as close to the mixer as possible
- If static, dig down into the material to obtain a proper sample
- Label all sample bags to match the location if taken from the surge or mixer and sequence if taken from the leg transition
- Choose a reputable lab

Twin Shaft Sample Locations

Sample locations A-H time/trace concentration


Results: @60 sec. CV 8.95 @90 sec. CV 6.93 @120 sec. CV 5.61

Single Shaft Sample Locations

Mixer Distribution Fails

The mixer may be overfilled

- Density of ration may have changed
- Putting more feed in the mixer to meet production goals

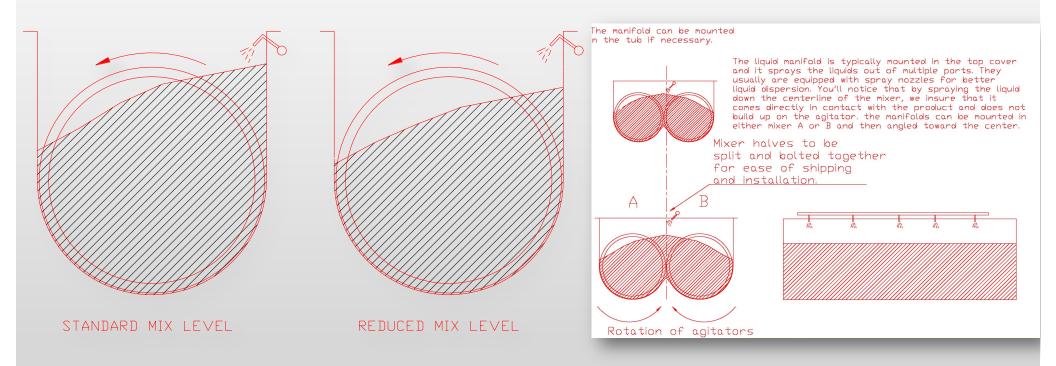
Mix Sequence

- Not enough dry mix time
- Determine the length to width ratio

Product addition location

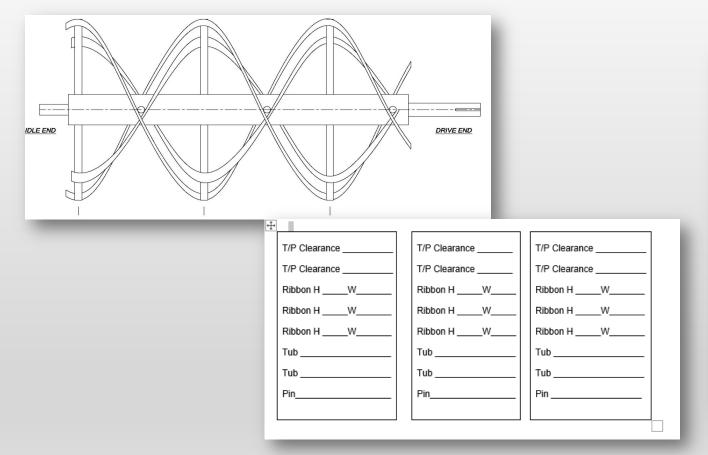
Test Procedure

Consider how and where the test samples are being taken


Agitator wear and/or missing pieces

Product build-up on the agitator

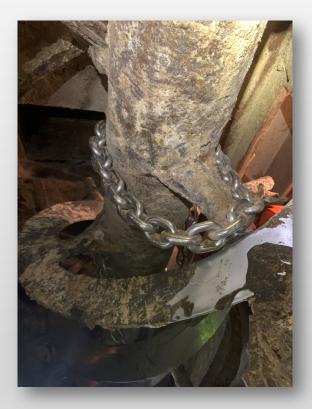
Contact Scott Equipment Company


Mixer Level Examples

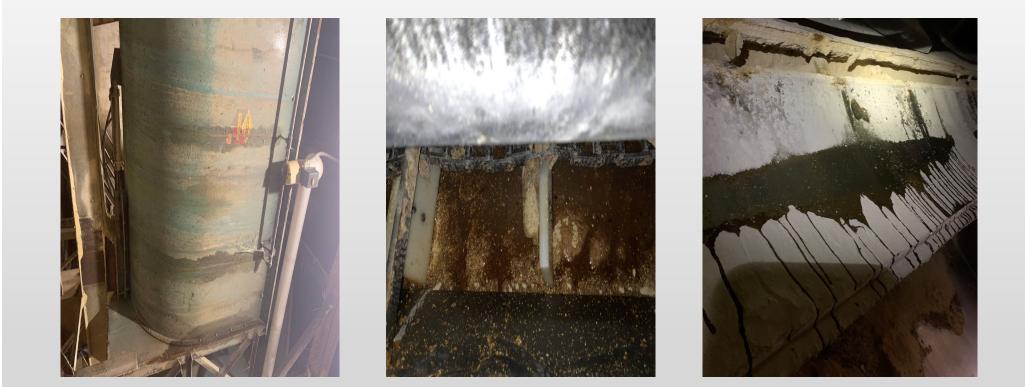


Measuring Wear

Inspection Checklist


COULDARIES CONTRACT, AND	
Discharge Gate Type	
	Comments
Bearings: Good condition Y / <u>N_Grease</u> : Y / N	Comments
Seals: Leaking Y / <u>N_Comments</u>	
Gearbox: Leaking Y / N Type	Comments
Air Exchange Mixer to Surge Y / <u>N_Type</u>	
Comments:	
Air Exchange Mixer to Scale Y / <u>N_Type</u>	

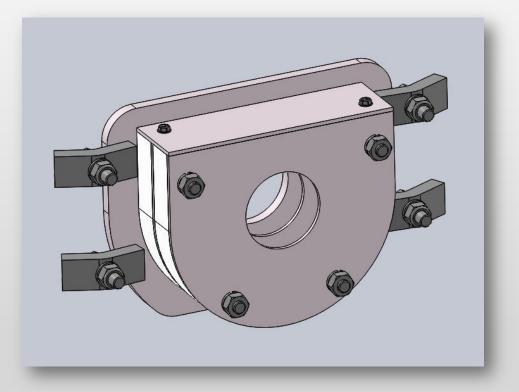
Flighting Intact: Y / <u>N_Comments</u>
Pins Okay: Y / N Comments:
Liquid Manifolds Y / N Comments
Mixer Cover: Y / N Comments
Surge Hopper Y / N Bent Paddles Y / <u>N_Number</u>
Air Clevis


Mixer Cleanliness

Leaking Manifolds

Ovaling Pin

Broken Components



Shaft Seals

Optimize my Existing Mixer

Establish a benchmark – Where are you now?

What is your current mix cycle?

What is your current mixer throughput?

What is your current CV?

What is the current amperage draw of the mixer with a full batch?

What is the maximum capacity that your elevator leg/take-away conveyor can handle?

Goals

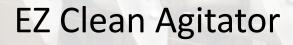
What capacity do you require?

Increased Throughput

Increase production with an existing mixer while maintaining quality?

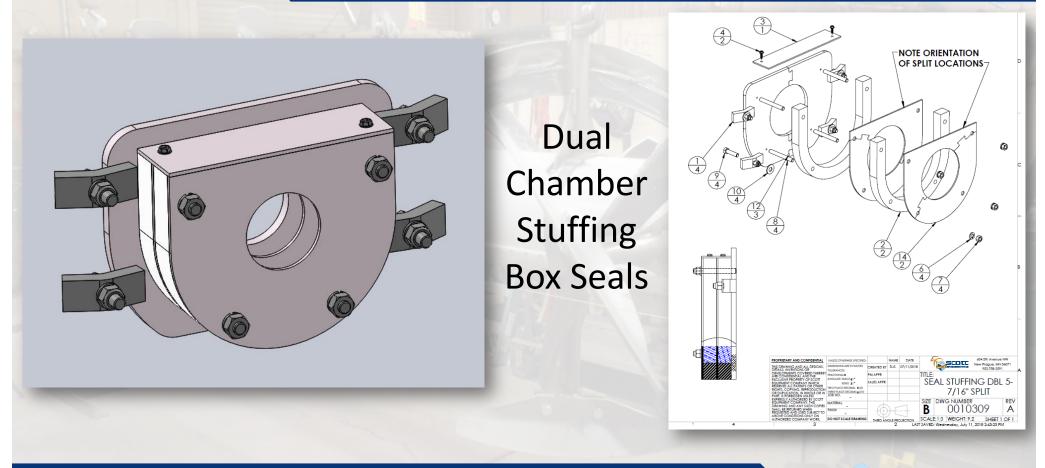
- Increase rotor speed (full amp load allowing)
- Add flighting, (dependent on agitator main shaft design and amp load)
- Each approach will allow a decrease in cycle time raising the batches per hour allowable.
- Weigh-up and take-away will need to also be considered.

Mix Time/Production Rates


BATCH SIZE	CYCLE TIME	CYCLES/HOUR	TONS/HOUR	TON/DAY	TONS/WEEK	TONS/YEAR		
(ton)	(minutes)			(24 hr. day)	(5 days)			
4.5	2.5	24	108	2,592	12,960	673,920		
4.5	2.75	21.8	98.1	2,354	11,770	612,040		
4.5	3	20	90	2,160	10,800	561,600		
4.5	3.25	18.46	83	1,992	9,960	517,920		
4.5	3.5	17.14	77	1,848	9,240	480,480		
5	2.5	24	120	2,880	14,400	748,800		
5	2.75	21.8	109	2,616	13,080	680,160		
5	3	20	100	2,400	12,000	624,000		
5	3.25	18.46	92.3	2,215	11,075	575,900		
5	3.5	17.14	85.7	2,057	10,285	534,820		
5.5	2.5	24	132	3,168	15,840	823,680		
5.5	2.75	21.8	119.9	2,878	14,390	748,280		
5.5	3	20	110	2,640	13,200	686,400		
5.5	3.25	18.46	101.5	2,436	12,180	633,360		
5.5	3.5	17.14	94.3	2,263	11,315	588,380		
6	2.5	24	144	3,456	17,280	898,560		
6	2.75	21.8	130.8	3,139	15,695	816,140		
6	3	20	120	2,880	14,400	748,800		
6	3.25	18.46	110.7	2,657	13,285	690,820		
6	3.5	17.14	102.8	2,467	12,335	641,420		

Whats New in Mixing Manifold Box MAIN HEADER THREADED PIPE FITTING NOZZLES SUGGESTIONS FOR LIQUID APPLICATION ALLOW MAXIMUM AMOUNT OF TIME FOR ADDING LIQUIDS (30-45 SECONDS) SIZE NOZZLES ACCORDINGLY В A Rotation of agitators Manifoldbox

Whats New in Mixing



Whats New in Mixing

Custom

Each mill will have slightly different procedures and requirements. A change or modification that works for one installation may not work for the next. Utilize manufacturers that can customize to your requirements.

Conclusion

Successful Mixing Is....

- Choosing the right Mixer (Surge) for your needs
- Following a mix cycle that falls within the capabilities of the machine
- Placing the ingredients in the right spot
- Testing to ensure accuracy
- Maintaining the mixer through a simple yet disciplined procedure/schedule

