HOW IMPORTANT IS STEAM TO YOUR PROCESS?

Don Williams RF MacDonald Company Corporate Trainer

BACKGROUND

- × U.S. Navy 1973 to 1988 (Active Duty and Reserves) – Machinist Mate 1st Class

BACKGROUND

- COEN Burner Company 1991 to 2000 Product Line Manager, R&D Low NOx burners and controls
- Proctor Sales 2000 to 2008 Industrial Boiler Systems Sales and Design Engineer

BACKGROUND

~ since 1956

x R. F. MacDonald Company 2008 to present:

- × Modesto Service Manager 2008 to 2010
- Corporate Trainer 2010 to present

TOPICS

- × What is steam and its benefits?
- **×** How do we generate steam?
- × Why do you need to maintain your boiler?
- What will be the result of not maintaining your boiler?

× Temperature is consistent based on pressure

× Sterile

Saturated Steam Table

Start @ 32 deg. F

	Pressure (psig)	0	10	80	100
	Saturation Temp	212	239.5	323.9	337.9
	Volume (ft³/lb)	26.4	16.46	4.66	3.89
	Sensible Heat (btu/lb)	180	207.9	294.4	308.9
	Latent Heat (btu/lb)	970	952.5	891.9	880.7
	Total Heat (btu/lb)	1150	1160.4	1186.3	1189.4

- × Steam is used for various applications
- × Pasteurizing
- Comfort heating
- Humidification
- × Cooking processes
- × Feed preparation

What do cattle eat?

Steam-flaked Corn

Feedyard Learning Center

Steam flaking systems - conditioning

Calculating Steam Consumption 100% Quality Steam, 100% Efficiency

Assume: 10 Tons/Hour on Corn Incoming temperature 60° F Incoming moisture 14% Condition to 212° F

10 Ton x 2,000#/Ton x .33 x (212-60) = 1,003,200 BTU Req

Saturated steam @ 212 °F and ATM Pressure = 1150 BTU/#

1,000,000 BTU / 1150 BTU/# = 872# Steam Required

872# Steam (Water) / 20,872# Corn = Addition of 4.2% Moisture

Calculating Steam Consumption 80% Quality Steam, 80% Efficiency

Assume: 10 Tons/Hour on Corn Incoming temperature 60° F Incoming moisture 14% Condition to 212° F

10 Ton x 2,000#/Ton x .33 x (212-60) / .8 = 1,254,000 BTU Req

80% Quality steam @ 212°F and ATM Pressure = 956 BTU/#

1,254,000 BTU / 956 BTU/# = 1312# Steam Required

1312# Steam (Water) / 21,312# Corn = Addition of 6.2% Moisture

Steam Flaking - Conditioning Costs

Assumptions: 100% make up water @ 50°F Boiler pressure @ 120 PSI (350°F) Boiler efficiency = 85% Natural gas @ \$0.27 / 100,000 BTU (Therm)

1% moisture addition per ton = 20# steam

<u>20 x ((350-50) + 970)</u> = 29,882 BTU's required 85%

<u>29,882</u> X \$0.27 = \$0.081 per 1% moisture addition per ton 100,000

Mechanisms of Heat Transfer

Firetube BoilersWatertube Boilers

Surrounding Water

Cleaver Brooks CBEX Boiler

Cleaver Brooks CBEX Boiler

Inside Story - Shortcut.Ink

Spiral Spring Coil Construction allows rapid start-up without thermal stress.

Clayton Steam Generator

Clayton Steam Generator

THE CLAYTON PUMP = THE CLAYTON COIL = THE CLAYTON SEPARATOR

- Annual inspections required all boilers operating at > 15 PSIG
- Hourly inspections required per California Title 8 Section 781 "Boiler Attendance"
- Water chemistry testing should be completed daily at a minimum
- Testing Primary Low Water Cutout each shift

Excerpt from Travelers Insurance Risk control maintenance guidelines for boilers

Low pressure steam	Two LWCOs , the lower equipped with a manual reset	Daily	Rapid drain
(pumped and gravity		Annual	Slow drain
condensate return)		Annual	Inspect
	High pressure limit cutoff with manual reset		- <i>"</i>
	Orfebrushie	Annual	Operational
	Safety valve	Even 2 Months	Manual
Llink processes at an	Two LMCCo, the lower equipped with a manual react	Every 5 Morturs	Ividi ludi Danid drain
High pressure steam	Two LWCOs, the lower equipped with a manual reset	Dally	Rapid drain
(automatically fired and		Annual	Slow urain
unattended)		Annual	inspect
	High pressure limit cutoff with manual reset	Annual	Operational
	5		
	Safety valve	Every 6 months	Manual
		Annual	Pressure
High pressure steam	One LWCO	Each shift	Rapid drain
(operator attended)		Annual	Slow drain
	V	Annual	Inspect
	High and low water level alarms	Each shift	Manual
	right and low water level alarms	Lach shint	Mariuai
	Safety valve (400 psi or less)	Every 6 months	Manual
		Annual	Pressure
	Safety valve (over 400 psi)	Every 3 years	Pressure

× Clayton Boiler water chemistry requirements

COIL FEEDWATER AT SAMPLE VALVE				
Limit Values:	Typical Values:			
Hardness – 4 ppm maximum	0 ppm			
pH	10.5 – 12.5			
Residual Sulfite	50 – 100 ppm (during operation) > 100 ppm (during wet lay-up)			
Limit dissolved solids – 8,550 ppm maximum	*3,000 – 6,000 ppm			
Free of suspended solids (mud, rust particles, etc.)	0			

Typical Firetube water chemistry requirements

Water Constituent Tolerance: 0-300 operating psig

Feed	Water	Boiler Water		
Oxygen	.007 ppm	Silica	150 ppm	
Iron & copper 0.1 a	& 0.05 ppm	Total Alkalinity	700 ppm	
Total Hardness	0.3 ppm	Free OH Alkalinity	200-400 ppm	
рН	8.3 - 10.0	Specific Conductance	7000 umhos	
Non-Volatile TOC (Total Organic Carbon)	1 ppm			
Oily Matter	1 ppm			

- When making hourly rounds complete boiler log sheet
- × Note boiler water level
- × Note Feed water tank/DA Tank water level and pressure/temperature
- × Inspect burner flame
- × Note any leaks

× Typical boiler failures:

- × Flame failure during run or pilot
- Low water shutdown
- × Control faults
- Water chemistry out of compliance with established parameters
- × Lack of maintenance
- x Don't ignore the problem, find the cause and resolve it!

% Boiler Efficiency Loss Due to Scaling

Scale increases operating costs - \$\$\$ lost

Poor water chemistry resulting in tube failure

Lack of maintenance

Auxiliary Low Water Cutout not tested correctly and had failed

OVERVIEW

- × How important is steam to your process?
- × Without steam, no or limited production
- No or limited production costs you \$\$\$\$ in potential feed sales
- Customers will go to another supplier who can meet their immediate needs
- Sy the way, those customers may not come back

OVERVIEW

